
Physics 127a: Class Notes

Lecture 18: Gases with Internal Degrees of Freedom

Partition Functions

Most gases consist of atoms or molecules with internal degrees of freedom. For example atoms may have
spin or orbital angular momenta, as well as electronic excitations, and molecules may also have rotation
and vibrations of the internuclear coordinates. In principle the procedure to calculate the effect on the
thermodynamics is straightforward. The single particle energy levels are nowεp + Ei where theEi are the
various excitation energies. (Of course the excitations do not affect the center of mass energy spectrumεp.)
We have to sum over the internal levels in the partition functions.

The grand canonical potential becomes

� = ∓kT
∑
p,i

ln
(
1± e−β(εp+Ei−µ)) (1)

(upper sign for Fermions, lower sign for Bosons). In the degenerate limit, the internal degrees of freedom
affect the occupation of the momentum states (e.g. for Fermions, if a second internal level becomes excited
as the temperature is raised, each momentum state can contain two particle, not just one), and it is hard to
say anything very general about this expression.

In the nondegenerate limit we can use the canonical partition function instead, which separates

QN = 1

N !
QN

1 with Q1 =
∑

p

e−βεp
∑
i

e−βEi . (2)

It is convenient to define an internal partition function

j (T ) =
∑
i

e−βEi . (3)

The internal degrees of freedom give an additive term in the free energyAint (T ,N)

A = Ap(T , V,N)+ Aint (T ,N) (4)

which is independent of the volume. Explicitly

A = NkT [ln(ρλ3)− 1
]−NkT ln j (T ). (5)

From this we can work out other thermodynamic quantities. For example the chemical potentialµ is

µ =
(
∂A

∂N

)
T ,V

= kT ln

(
ρλ3

j (T )

)
. (6)

Sincej (T ) is independent of volume the equation of stateP(N, V, T ) is not affected by the internal degrees
of freedom. Note if there are just a set ofg degenerate internal levels (e.g. spin degeneracyg = 2s + 1)
thenj (T ) = g, and is independent of temperature. In this case the internal energy is also not affected by the
internal degrees of freedom, the entropy gains a constant additive pieceNk ln g, and the chemical potential
is changed by−kT ln g.

An application where the chemical potential of gaseous molecules is important is to chemical reactions.
Before going into the details of how to calculatej (T ) I will describe this application.
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Chemical Equilibria

In a multicomponent system withNα particles of speciesXα the thermodynamic identity must be generalized
to

dE = T dS − PdV +
∑
α

µαdNa, (7)

with µα the chemical potential of theαth species. Legendre transformations give potentials for other equi-
libria, e.g. for equilibria at constantP, T , useG = E + PV − T S giving

dG = −SdT + V dP +
∑
α

µαdNa. (8)

Consider a chemical reaction written in the form∑
α

νaXα = 0 (9)

with νa positive for reactants and negative for products (e.g. the reaction 2H2 + O2 
 2H2O would be
written

2H2+O2− 2H2O = 0 (10)

so thatν1 = 2, ν2 = 1, ν3 = −2).
For equilibrium under this chemical reaction, minimizing the appropriate thermodynamic potential (A

at constantT , V andG at constantT , P , etc.) gives∑
α

µανα = 0 (11)

(for a reaction ofdNr formula units we havedNα = ναdNr ). This is the general condition for chemical
equilibrium.

For an ideal gas we have evaluated the chemical potential

µ = kT ln

(
nαλ

3
α(T )

jα(T )

)
(12)

with nα = Nα/V , λα = √h/2πmαkT , andjαthe partition function of the internal degrees of freedom of
theαth species. Note that the energies of the different particles must be measured with a consistent zero of
energy: this can be done by including binding energies etc. in the internal energy levels and sojα. Substituting
in Eq. (11) gives thelaw of mass action ∏

α

nναα = K(T ) (13)

with K(T ) the equilibrium constant just a function of temperature for a given reaction

K(T ) =
∏
α

[
jα(T )

λ3
α(T )

]να
. (14)

An example, important in astrophysics, is the ionization of hydrogen

e + p 
 H. (15)

Using je = 2, jp = 2 (from the spin degeneracy) andjH = 4eβEI with EI the ionization energy (the
Rydberg) and the 4 from the degenerate spin states (at temperatures high compared to the hyperfine splitting)
you should be able to derive theSaha equation

nenp

nH
=
(

2πmekT

h2

)3/2

e−EI /kT (16)
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(wheremH ' mp has been used to simplify).
In general, to calculatej (T ) Eq. (3) we must look up the energy levelsEi in spectroscopy books, and

see which ones are comparable tokT for the temperatures of interest, and then perform the sums to calculate
the thermodynamic quantities. In some cases simple approximations give a good account of the energy level
structure, and we can proceed more analytically. We will consider this for the example of diatomic molecules
in the next lecture.
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